FACTORS AFFECTING REACTION RATES

Objective:

To determine the affect that concentration, nature of reactants, temperature, and the use of a catalyst can have on reaction rates.

Materials:

See each part of the procedure.

Procedure:

Part 1 - Concentration

reaction under study: $Mg_{(s)} + 2HCl_{(aq)} \Rightarrow MgCl_{2(aq)} + H_{2(g)}$

- 1. Using a pencil, ruler, and scissors, measure and cut three 2.0cm strips of Mg.
- 2. Fill the eudiometer tube full of water and the trough half full of water.
- 3. Put the eudiometer tube over the hole in the trough and clamp it down.
- 4. Put 20mL of 2.0M HCl in the flask.
- 5. Drop a 2 cm *Mg* strip into the flask and start timing simultaneously.
- 6. When the *Mg* disappears, stop and record the time to the nearest second.
- 7. Record the volume of H_2 produced from the eudiometer tube.
- 8. Repeat for 3.0M HCl and 6.0M HCl.

Part 2 - Nature of Reactants

- 1. Weigh out 0.10g of *Mg* powder and 0.10g of *Zn* powder.
- 2. Fill a test tube ¼ full with 6.0*M HCl*.
- 3. Drop the *Mg* powder in the test tube and simultaneously start the timer.
- 4. Stop and record the time when the *Mg* disappears.
- 5. Do the same for Zn powder.

Part 3 - Temperature

reaction under study: Alka-Seltzer + $HCl_{(aq)} \Rightarrow CO_{2(g)}$ + other products

- 1. Fill two 100mL beakers with 40mL of 0.1*M HCl*. One flask should be put into a 250mL beaker cold water bath, and one should be put in a warm water bath.
- 2. Obtain two alka-seltzer tablets, and record the mass of each.

- 3. Use a thermometer and record the temperature of each HCl solution.
- 4. Drop an Alka-Seltzer tablet into the HCl in the cold water bath and time the reaction until it stops.
- 5. Repeat for warm HCl.

Part 4 - Catalyst

reaction under study:

Hydrogen peroxide (H_2O_2) decomposes *spontaneously* (but very slowly) to produce *water* and *oxygen*. $2H_2O_{2(aq)} \Rightarrow 2H_2O_{(l)} + O_{2(g)}$

*Throughout the procedure, make observations using the table in Data and Observations (look over the table before beginning).

- 1. Fill two test tubes 1/4 full with H_2O_2 .
- 2. To one test tube add a spatula tip of MnO_2 .
- 3. Record observations.

Data and Observations:

*Use significant figures for all measurements and calculations *Make titles for each table

Part 1 - Concentration

Table 1 -

[HC1]	Volume H2 produced (mL)	Time (s)	Rate (mL H2/s)

Part 2 - Nature of Reactants

Table 2 -

Metal	Mass Loss (g)	Time (s)	Rate (g/s)

Part 3 – Temperature

Table 3 -

Temperature of HCl	Mass of Alka- Seltzer (g)	Time (s)	Rate (g/s)

Part 4 – Catalyst

*Observations include descriptions of the substances as well as descriptions of changes occurring

Table 4 -

Reaction	Before	During	After
H2O2 solution			
H2O2 solution with MnO2			

Questions:

1. Concentration:

- a) Using your rate results for support, describe, using collision theory, how a concentration increase affects reaction rate.
- b) For the trial of your choice, utilize stoichiometry and find the mass of $Mg_{(s)}$ used starting with the rate in mL H_2 / second.

2. Nature of Reactants:

a) What was the independent variable in this reaction (what was different in each trial)?

- b) Using your quantitative rate results as support, which metal reacts at a higher rate with HCl?
- c) What does this tell you about Mg compared to Zn with respect to HCl?

3. Temperature:

- a) Using your results as support, which temperature gave the highest reaction rate?
- b) Describe how an increase in temperature affects reaction rate using collision theory. There are two different reasons that contribute (consult your notes).
- 4. **Catalyst**: A reaction was occurring in both test tubes, yet the reaction was observable in only one test tube.
- a) What substance did the test tube with an observable reaction contain that the other didn't?
- b) What was this substance acting as?
- c) At the molecular level, how did it contribute to the reaction (using collision theory, how did it cause the reaction to speed up)?
- d) Was it still present afterwards? Support with observations from Table 4.

Conclusion:

Using one sentence per factor (4 in total), describe how each factor studied in this experiment affected reaction rate.