definition

A geometric sequence is a sequence in which the ratio of consecutive terms is constant.

Warmup - Suppose you have the geometric sequence 4, 12, 36, 108, ...

a) What is t_1 ? 4

b) What do you multiply by to get the next term (this is the r value)? 3

c) Is the sequence geometric (see the definition above)? In other words, is the r value consistent throughout the sequence? yes

d) What is t_5 ? Explain how you got t_5 . Write a general formula for this.

$$t_5 = 108 \times 3 = 324$$
 $t_4(r) = t_5$ so $t_n = t_{n-1}r$

e) Show how to get t_5 using only t_1 and r.

f) Show how to get t_8 using only t_1 and r.

g) What do you notice about the exponent on r compared to n? it is always one less than n

h) Write a general formula for t_n for any geometric sequence: $t_n = t_i r^{n-1}$

Geometric Sequence formula

The general term of a geometric sequence where n is a positive integer is:

$$t_n = t_1 r^{n-1}$$
 OR $t_n = t_{n-1} r$

where t_1 is the first term, n is the number of terms, r is the common ratio, and t_n is a general term

common ratio

For a geometric sequence, the **common ratio** (r), can be found by taking any term (except the first) and dividing that term by the preceding term. So $r=\frac{t_n}{t}$

Example – Are the following sequences geometric (ie. Is the
$$r$$
 value consistent)? $\frac{4}{2} = 2$ $\frac{6}{4} = 1.5$ $\frac{10}{4} = 2.5$ $\frac{62.5}{25} = 2.5$ a) 2, 4, 6, 8 b) 4, 10, 25, 62.5 $\frac{25}{10} = 2.5$ $\frac{25}{10} = 2.5$ $\frac{25}{10} = 2.5$ $\frac{25}{10} = 2.5$

Example – Find t_{18} for the following: 3, -6, 12, -24, ...

$$t_{18} = t_1 r^{17}$$
 $r = \frac{-6}{3} = -2$ $t_{18} = 3(-2)^{17}$ $t_{1} = 3$ $t_{18} = 3(-2)^{17}$

Example – Find t_1 if $t_5 = 567$ and $t_6 = 1701$.

$$r = \frac{1701}{567} = 3 \qquad t_5 = t_1 r^4 \qquad t_1 = \frac{567}{81} = 7$$

$$567 = t_1(81)$$

Example – Bacteria reproduce by splitting into two. Suppose there were three bacteria originally present in a sample. How many bacteria will there be after 8 generations?

Example – Suppose a photocopier can reduce a picture to 60% of its original size. If the picture is originally 42cm long, what length will it be after five successive reductions?

successive reductions?

$$t_1 = 42$$
 $r = 0.6$ $t_6 = t_1 r^5$
 $t_2 = 42(0.6) = 25.2$ $t_6 = 42(0.6)^5$
after 1 reduction $t_6 = 3.27$ cm
 $t_6 = 4$ $t_6 = 3.27$ cm

Example – In 1990 the population of Canada was approximately 26.6 million. The population projection for 2025 is approximately 38.4 million. If this projection were based on a geometric sequence, what would be the annual

growth rate?
$$t_1 = 26600000$$
 $t_36 = t_1 r^{35}$
 $t_{36} = 38400000 = 26600000 r^{35}$
 $t_{36} = 1.4436$

Find r
 $r^{35} = 1.4436$
 $r^{35} = 1.4436$

Percentages

If a question involves percent **growth**, *r* must be greater than 1.

Ex. If there is 30% growth each year, what is the r value for the problem? 1 + 0.30 = 1.3

If a question involves a percent reduction, r must be less than 1 and must represent the percent remaining (not the percent lost).

Ex. If you reduce the size of your savings by 25% per year, what is r?