4.1 – Estimating Roots Name: Date: Goal: to explore decimal representations of different roots of numbers ### Toolkit: - Finding a square root - Finding a cube root - Multiplication - Estimating #### Main Ideas: #### **Definitions:** Radical: an expression consisting of a radical sign, a radicand, and an index. Perfect squares and cubes to memorize: $\sqrt{4} = , \sqrt{9} = , \sqrt{16} = , \sqrt{25} = , \sqrt{36} = \sqrt{49} = , \sqrt{64} = , \sqrt{81} = , \sqrt[3]{8} = , \sqrt[3]{27} = , \sqrt[3]{64} = , \sqrt[3]{125} =$ Ex 1) Evaluate the following radicals, identify the radicand and index for each: a) $$\sqrt{16}$$ b) $$\sqrt[3]{64}$$ Radicand: _____ Radicand: _____ Index: Estimating square roots Ex 2) Estimate the value of $\sqrt{20}$ to one decimal place. **Step 1:** Find the two perfect squares that are closest to the radicand you are looking for (one that is lower and one that is higher). Step 2: Find which of the two perfect squares is closest to your radicand; this will determine the decimal point of your root. Evaluate $\sqrt{20}$, how close was your estimate? | Estimating cube roots | Ex 3) Estimate the value of $\sqrt{16}$ | | | | | |--|--|--|--|--|--| | | Step 1: Find the two perfect cubes that are closest to the radicand you are looking for. | Step 2: Find which of the two perfect cubes is closest to your radicand. | Evaluate $\sqrt[3]{16}$, how close was your estimate? | | | | | | Why can you take
the cube root of a
negative number but
not the square root
of a negative
number? | Ex 4) Estimate the value of $\sqrt[3]{-32}$ | | | | | | | | | | | | | | Ex 5) Evaluate $\sqrt{0.64}$ | Ex 6) Evaluate $\sqrt{0.0196}$ | Ex 7) Write an equivalent form of 0.3 as a cube root. | | | | | | | | | | | | | | uld you write 5 as a square root? A cube root? A fourth root? | | | | | ### 4.2 - Irrational Numbers Name: Date: Goal: to classify real numbers, and to identify & order irrational numbers Toolkit: Looking back: - Estimating roots - Placing numbers on number lines - Anything you remember about classifying Real Numbers Natural Numbers () Whole Numbers () Integers () Rational Numbers () Irrational Numbers () Classifying Real Numbers Ex1) Where do these numbers belong in the diagram of Real numbers? $$4\sqrt{2}$$ $$\frac{4}{3}$$ $$\frac{-8}{2}$$ $$0.\overline{6}$$ $4\sqrt{2}$ $\frac{4}{3}$ $\frac{-8}{2}$ -12 π 0 $\sqrt{16}$ $$0 \sqrt{16}$$ $$\sqrt{3}$$ $$\sqrt[3]{-125}$$ $\sqrt{3}$ $\sqrt[3]{15}$ 19 Real Numbers: Rational Numbers Integers Whole Numbers > Natural Numbers Irrational Numbers Ordering numbers on a number line Ex2) Use a number line to order these numbers from least to greatest. - A ³√6 - $\sqrt[3]{-2}$ - $\frac{\mathrm{C}}{\sqrt{11}}$ - D ∜30 Connect: Ex3) Is the tangent ratio for θ in each right triangle rational or irrational? ## b) Reflection: How could you order a set of irrational numbers if you do not have a calculator? | 4.3A – From I | Entire to Mixed Radicals | Name:
Date: | |---|--|---| | Goal: to expre | ss an entire radical as a mixed radi | cal | | Toolkit:Understanding RadicalsIdentifying Factors of a Number | | Main Ideas: | | Perfect Squar | <u>es</u> - 1, 4, 9, 16, 25, 36, 49, | 64, 81, 100, 121, 144, | | Perfect Cubes | - 1, 8, 27, 64, 125, 21 | 6, | | What is an entire radical? | | | | What is a mixed radical? | | | | | Equivalent Forms:
Ex 1) a) $\sqrt{16 \cdot 9}$ is equivalent to $\sqrt{16} \cdot \sqrt{16}$ | 9 because: b) $\sqrt[3]{8 \cdot 27}$ is equivalent to $\sqrt[3]{8} \cdot \sqrt[3]{27}$ because: | | What is the
Multiplication
Property of
Radicals? | $\sqrt[n]{ab} = \sqrt[n]{a} \cdot \sqrt[n]{b}, \text{where } n \text{ is a}$ | natural number, and a and b are real numbers | | | | lify square roots and cube roots that are <i>not</i> perfect we <i>factors</i> that are perfect squares or perfect cubes. | | Simplifying
Square Roots | We can simplify $\sqrt{24}$ because 24 hat $\frac{1}{24}$ as a product of | s a perfect square factor of (hint:look at list of perfect squares!) of two factors, with the first one being the perfect square: | | Simplifying
Cube Roots | We can also simplify $\sqrt[3]{24}$ because 2 Re-write $\sqrt[3]{24}$ as a product of | 24 has a perfect cube factor of (hint:look at list of perfect cubes!) of two factors, with the first one being the perfect cube: | | | Ex 2) Simplify each radical: (remember your list of perfect squares and perfect cubes!) | | | | | | | | | | | |---|---|-----------|--------------------|-------------|-----------|------------|-----------|-------------------------------|----------|-------------------|--| | Tip: If there is MORE than one perfect square or perfect cube factor, choose the LARGEST one! | a) | √80 | b) | $\sqrt{32}$ | c) | √98 | d) | ³ √162 | e) | ³ √108 | | | How do you simplify something with an index of 4? (a fourth root?) | Ex 3) | Simplify | / ∜162 | | | | | ne factoriza
look for a fa | | ppears 4 times! | | | | Ex 4) | Simplify | , ⁴ √48 | | | | | | | | | | Word Problem | Vord Problem Ex 5) A cube has a volume of $128cm^3$. Write the edge length of in simplest radical form. | | | | | | | h of the c | ube | | | | | | | | | | | | | | | | | Reflection: H | Iow do <u>y</u> | you use t | the index | of a radica | l when yo | ou simplif | y a radic | al? Use a | n exampl | e. | | Goal: to express a mixed radical as an entire radical **Toolkit:** - List of Perfect Squares: 1, 4, 9, 16, 25, 36, 49, 64, 81, 100.... - List of Perfect Cubes: 1, 8, 27, 64, 125, 216, - Multiplication Property of Radicals $(\sqrt{ab} = \sqrt{a} \cdot \sqrt{b})$ - Mixed Radical....ex. - Entire Radical.....ex. Main Ideas: How do you write a mixed radical as an entire radical? Write the mixed radical $4\sqrt{3}$ as an entire radical: $$4\sqrt{3} = 4 \cdot \sqrt{3}$$ - Use the Multiplication Property of Radicals $$= \sqrt{16} \cdot \sqrt{3}$$ (re-write 4 as a radical....think4 = $\sqrt{?}$ $\sqrt{16}$!) $$= \sqrt{16 \cdot 3}$$ - Combine these under the same radical sign and multiply $$=\sqrt{48}$$ (***NOTICE... these are the opposite steps to writing an entire radical as a mixed radical) Ex. 1) Write each as an entire radical: a) $$5\sqrt{2}$$ b) $$3\sqrt{3}$$ c) $$3\sqrt[3]{2}$$ d) $$2\sqrt[3]{6}$$ What do you do if the index is 4 or 5 (or higher?) Write $3\sqrt[5]{2}$ as an entire radical: √486 First, re-write 3 as $\sqrt[5]{?}$ $3 = \sqrt[5]{3 \cdot 3 \cdot 3 \cdot 3 \cdot 3} = \sqrt[5]{243}$ So now, $$3\sqrt[5]{2}$$ = $3 \cdot \sqrt[5]{2}$ = $\sqrt[5]{243} \cdot \sqrt[5]{2}$ = $\sqrt[5]{243 \cdot 2}$ now, using the Multiplication Property of Radicals... Ex. 2) Write each as an entire radical: b) $$4\sqrt[5]{2}$$ How can entire radicals be used to help you order a set of mixed radicals with the same index? Ex. 3) Arrange the following in order from greatest to least: $3\sqrt{5}$, $2\sqrt{13}$, $4\sqrt{3}$, 2, $9\sqrt{2}$ **Reflection:** How do you use the index of a radical when you write a mixed radical as an entire radical? Use an example to help your explanation # 4.4 – Fractional Exponents and Radicals Name: Date: Goal: to relate rational exponents and radicals Toolkit: - Exponent Laws - Taking square and cube roots - Converting decimals to fractions - Order of operations Main Ideas: **Evaluating powers** of the form $a^{\frac{1}{n}}$ ## Powers with Rational Exponents with Numerator 1 When n is as natural number and x is a rational number, $x^{\frac{1}{n}} = \sqrt[n]{x}$... for example... $16^{\frac{1}{2}} = \sqrt[2]{16} = 4$ Ex 1) Write each power as a radical then evaluate without using a calculator. - a) $1000^{\frac{1}{3}}$ b) $0.25^{0.5}$ c) $(-8)^{\frac{1}{3}}$ d) $\left(\frac{16}{91}\right)^{\frac{1}{4}}$ Rewriting powers in radical and exponent form ## **Powers with Rational Exponents** When m and n are natural numbers, and x is a rational number, $$x^{\frac{m}{n}} = \left(x^{\frac{1}{n}}\right)^m = \left(\sqrt[n]{x}\right)^m \dots \text{ ex} \quad 25^{\frac{3}{2}} = \left(25^{\frac{1}{2}}\right)^3 = \left(\sqrt[2]{25}\right)^3 = (5)^3 = 125$$ $$x^{\frac{m}{n}} = (x^m)^{\frac{1}{n}} = \sqrt[n]{x^m} \dots \text{ ex}$$ $25^{\frac{3}{2}} = (25^3)^{\frac{1}{2}} = \sqrt[2]{25^3} = \sqrt{15625} = 125$ Ex 2) Write $26^{\frac{2}{5}}$ in radical form in two different ways. Ex 3) Write the following in exponent form. a) $\sqrt{6^5}$ b) $$\left(\sqrt[4]{19}\right)^3$$ | Evaluating powers with rational | Ex 4) Evaluate the following: | | | | | | | |---------------------------------|---|--------------------------|----------------------|-----------------------|--|--|--| | exponents and rational bases | a) $0.01^{\frac{3}{2}}$ | b) $(-27)^{\frac{4}{3}}$ | c) 32 ^{0.4} | d) 16 ^{0.75} | 8 4 | | | | | | | | | | 2 | | | | | | Applying rational exponents | Ex 5) Biologists use the formula $b = 0.01m^{\frac{2}{3}}$ to estimate the brain mass, b kilograms, of a mammal with body mass, m kilograms. Use the formula to estimate the brain mass of each animal. | | | | | | | | | a) A moose with a body mass of 512kg | b) A cat with a body mass of 5kg | **Reflection:** In the power $x^{\frac{m}{n}}$, m and n are natural numbers and x is a rational number. What does the numerator m represent? What does the denominator n represent? Use an example to explain your answer. # 4.5 - Negative Exponents and Reciprocals Name: Date: Goal: To relate negative exponents to reciprocals Toolkit: - Simplifying and evaluating with rational exponents - Multiplying fractions Main Ideas: What is a reciprocal? Two numbers with a product of 1 are reciprocals. Ex. 1) Since $4 \cdot \frac{1}{4} = 1$, the numbers 4 and $\frac{1}{4}$ are <u>reciprocals</u> Ex. 2) Since $\frac{2}{3} \cdot \frac{3}{2} = 1$, the numbers $\frac{2}{3}$ and $\frac{3}{2}$ are reciprocals Powers with Negative Exponents When x is any non-zero number and n is a rational number, x^{-n} is the reciprocal of x^n . That is, $x^{-n} = \frac{1}{x^n}$ and $\frac{1}{x^{-n}} = x^n$, $x \neq 0$ Evaluate a power with a negative exponent Evaluate each power: b) $$(-5)^{-3}$$ c) $$\left(-\frac{3}{4}\right)^{-3}$$ Ex. 3) a) $$3^{-2}$$ b) $(-5)^{-3}$ c) $(-\frac{3}{4})^{-3}$ d) $(\frac{10}{3})^{-2}$ Evaluate a power with a negative rational exponent To evaluate a power with a negative rational (fraction) exponent: Ex. 4) Evaluate $8^{-\frac{2}{3}}$ $$=\frac{1}{8^{\frac{2}{3}}}$$ write with a positive exponent $$=\frac{1}{(\sqrt[3]{8})^2}$$ re-write into radical form, then work from inside out $$=\frac{1}{(2)^2}$$ evaluate (write answer with NO exponents) $$=\frac{1}{4}$$ Ex. 5) Evaluate: - b) $\left(\frac{25}{36}\right)^{-\frac{1}{2}}$ c) $16^{-\frac{5}{4}}$ - d) $-25^{-1.5}$ (hint: change 1.5 to a fraction in lowest terms!) Applying Negative Exponents (word problems) Ex. 6) Use the formula $v = 0.155 s^{\frac{5}{3}} f^{-\frac{7}{6}}$ to estimate the speed of a dinosaur when s = 1.5 and f = 0.3 (answer is a speed in m/s) Substitute values into the proper places in the formula Evaluate, using your calculator ## 4.6A – Simplifying with Exponent Laws Name: Date: Goal: to apply all of the exponent laws to simplify expressions Toolkit: - Exponent Laws - Fractional and negative exponents - Operations with fractions, integers Main Ideas: **Exponent Laws** Product of powers: Quotient of powers: Power of a power: Power of a product: Power of a quotient: Power of zero: Fractional exponents: Negative exponents: Note: write all powers with POSITIVE EXPONENTS. Ex 1) Simplify by writing as a single power. - a) $0.6^2 \cdot 0.6^{-6}$ b) $x^{-4} \cdot x^7$ c) $m^7 \div m^{-2}$ d) $\frac{0.4^3}{0.4^4}$ e) $(n^2)^{-4}$ Which law(s) did you use? Ex 2) Simplify by writing as a single power. a) $$\left[\left(-\frac{4}{7} \right)^2 \right]^{-3} \div \left[\left(-\frac{4}{7} \right)^4 \right]^{-5}$$ b) $\frac{\left(2.3^{-3} \right)^{-5}}{2.3^5}$ b) $$\frac{\left(2.3^{-3}\right)^{-5}}{2.3^{5}}$$ c) $$\frac{8^{\frac{5}{4}} \cdot 8^{-\frac{1}{4}}}{8^{\frac{3}{4}}}$$ Note: write all powers with **POSITIVE** EXPONENTS. Ex 3) Simplify. a) $$(x^4y^{-2})(x^2y^3)$$ b) $$(27x^6y^9)^{\frac{1}{3}}$$ a) $$(x^4y^{-2})(x^2y^3)$$ b) $(27x^6y^9)^{\frac{1}{3}}$ c) $\left(\frac{6a^4b^{-3}}{14a^{-2}b^2}\right)^{-2}$ d) $$\left(\frac{50m^2n^4}{2m^4n^2}\right)^{\frac{1}{2}}$$ $$\left(\frac{50m^2n^4}{2m^4n^2}\right)^{\frac{1}{2}}$$ e) $$\frac{\left(2x^{\frac{3}{2}}y^2\right)\left(3x^{\frac{1}{2}}y^{-1}\right)}{(4x^3y^{-1})}$$ **Reflection:** How would you simplify the expression $\left(\frac{x^a}{x^3}\right)^2$ and how is it similar/different compared to the other problems we've done? Goal: to apply all of the exponent laws to evaluate expressions Toolkit: - Exponent Laws, incl. fractional /negative - Operations with fractions, integers - Substitution, BEDMAS Main Ideas: What is the difference between "simplifying" and "evaluating"? Simplify: Ex 1) Simplify $$x^{\frac{5}{3}} \cdot x^{\frac{1}{3}}$$ Evaluate: Ex 2) Evaluate $$1.5^{\frac{5}{3}} \cdot 1.5^{\frac{1}{3}}$$ Ex 3) Evaluate each expression for m = -1 and n = 2 Step 1: Simplify the expression Step 2: Substitute → replace letters with numeric values Step 3: Evaluate a) $$(m^2n^3)(m^3n^2)$$ b) $$\left(\frac{m^{-5}n^5}{m^{-2}n^6}\right)^{-3}$$ c) $\frac{(m^n)^2}{m^3}$ c) $$\frac{(m^n)^2}{m^3}$$ Solving Problems using the Exponent Laws Ex 4) A sphere has volume 600m³. - a) Write an expression for the radius in exponent form - b) What is the radius of the sphere to the nearest tenth of a metre?