3.3 - Common Factors of a Polynomial

Name: Date:

Goal: to determine the factors of a polynomial by identifying the GCF

Toolkit:

• Finding the GCF

• Distributive Property

Main Ideas:

Factor a binomial using the GCF

Ex 1) Factor the binomial: 3g + 6

Ex 2) Factor the binomial: $-8y + 16y^2$

Factor a trinomial using the GCF

Ex 3) Factor the trinomial: $3x^2 + 12x - 6$

Ex 4) Factor the trinomial: $6 - 12z + 18z^2$

Factor polynomials in more than one variable

Ex 5) Factor the trinomial: $-20c^4d - 30c^3d^2 - 25cd$

Reflection: How are the processes of factoring and expanding related?

Goal: to use models and algebraic strategies to multiply binomials and to factor trinomials.

Toolkit:

Factoring

Main Ideas:

Definitions:

Descending order: the terms are written in order from the term with the greatest exponent to the term with the least exponent Ascending order: the terms are written in order from the term with the least exponent to the term with the greatest exponent

Steps for Factoring a Trinomial in the form: x2+bx+c, where a=1

With any factoring question, first check to see if you can factor out a GCF from ALL terms!

- Step 1: If needed, re-order the terms in descending powers of the variable (biggest to smallest)
- Step 2: Find two numbers that multiply to equal the c term and add to equal the b term (add to the middle, multiply to the end)
- Step 3: Factor into two binomials using the numbers from step 2, with the variable from the question placed first in each bracket

Multiplying two binomials

Ex 1) Expand and Simplify: (x-1)(x-7)

use FOIL

Remember: expanding and factoring are opposite operations....they UNDO each other!

Factoring a trinomial in the form $x^2 + bx + c$

Ex 2) Factor the trinomial: $x^2 - 8x + 7$ we should end up with (x-1)(x-7)!

Notice that a (the number in front of the x^2) will always end up being 1 in these questions!

Ex 3) Factor: $a^2 - 2a - 8$

Factoring a trinomial written in ascending order

Ex 4a) Factor: $-30 + 7m + m^2$ b) $x^2 - 4xy + 21y^2$

Ex 5) Factor: $-5h^2 - 20h + 60$

Always check to see if there is a GCF you can factor out first! IF there is a negative number in front of the x^2 , factor out the negative as well.

Ex 6) Factor: $-12 - 9g + 3g^2$

Ex 7) Factor: $2x^2 - 6x - 80$

Ex 8) Factor: $x^2 + x - 2$

Reflection: Does the order in which the binomial factors are written affect the solution? Explain.

Name: Date:

Goal: to extend the strategies for multiplying binomials and factoring trinomials

Toolkit:

- Multiplying binomials
- Factoring

Main Ideas:

Factoring by Decomposition: (needed when the $a \ne 1$ in $ax^2 + bx + c$)

With any factoring question, first check to see if you can factor out a GCF from ALL terms!

- Step 1: If needed, re-order the terms in descending powers of the variable (biggest to smallest)
- Step 2: Find two numbers that multiply to equal ac and add to equal b (add to the middle, multiply to product of first and last)
- Step 3: Re-write the expression but split or *decompose* the b term using the two numbers from step 2.
- Step 4: Now the expression has FOUR terms, so we can factor by grouping the first two terms and the last two terms.
- Step 5: When fully factored, the remaining two brackets <u>need to be identical</u>! These are now a common factor, and can be factored out, and what is left becomes the components of the second bracket.

Factor by Grouping

Ex. 1) Factor the following by grouping:

a)
$$3x^2 - 3x - 2x + 2$$

b)
$$2x^2 - 4x + x - 2$$

Factoring a trinomial of the form $ax^2 + bx + c$

Ex 2) Factor the trinomial: $4g^2 + 11g + 6$ by decomposition

notice that a (the number in front of x^2) is not = 1 in any of these questions!

Ex 3) Factor the trinomial: $-7m - 10 + 6m^2$

	Ex 3) Factor: $8p^2 - 18pq - 5q^2$
	3
	Ex 4) Factor: $6x^2 + 14x - 12$
٦	
	Ex 5) Factor: $3x^2 + 6x - 9$
]	
	Ex 6) Find an integer to replace \square so that the trinomial can be factored. How many integers can you find?
	$4x^2 + \Box x + 9$

If you can make a trinomial have a=1 by removing a G.C.F., then you can use "the simple way"!

Reflection: Will decomposition work if the a value of a trinomial is 1? Do an example to prove this.

3.8 – Factoring Special Polynomials

Name: Date:

Goal: to investigate perfect square trinomials and difference of squares

Toolkit:

- Finding a square root
- Finding GCF
- Multiplying Polynomials

Main Ideas:

Definitions:

Perfect Square Trinomial: a trinomial of the form $m^2 + 2mn + n^2$; it can be factored as $(m + n)^2$ or of the form $m^2 - 2mn + n^2$; it can be factored as $(m - n)^2$ Difference of Squares: a binomial of the form $m^2 - n^2$; it can factored as (m - n)(m + n)

Warmup: Factor the trinomial $4x^2 - 4x + 1$ using decomposition.

Factoring a perfect square trinomial

Decomposition works, but it is time consuming. Test to see if the trinomial is a perfect square! If so, it will be quicker to factor. $4x^2 - 4x + 1$

Step 1: Is the trinomial in order?

Can you factor out a GCF?

Step 2: Are the first and last terms perfect squares?

Step 3: Make two brackets, and write the square roots into each. Then, figure out if the brackets should have a '+' or '-' in between the terms.

Step 4: Now test that the middle terms (the 'O' and 'I' of FOIL) add to the middle term of the original polynomial. If so, the trinomial is a perfect square.

Ex 1) Factor the trinomial: $36x^2 + 12x + 1$

Ex 2) Factor the trinomial: $18x^2 - 48xy + 32y^2$

Ex 3) Factor the trinomial: $25c^2 - 21cd + 4d^2$

Factoring a Difference of Squares Difference of Squares is only possible if you have a binomial. The binomial must have a SUBTRACT (difference) in between two PERFECT SQUARES (of squares).

Ex 4) Factor the binomial: $81m^2 - 49$

Step 1: Is there a subtract in the middle?

Step 2: Is each term a perfect square?

Step 3: If not, is there a GCF to factor out?

Step 4: Make two brackets, one with a '+' and one with a '-'.

Step 5 Square root each term and put into the appropriate position in each bracket.

CHECK:

Ex 5) Factor: $m^2 - 36$

Why is one bracket '+' and one '-'?

Ex 6) Factor: $32v^2 - 2w^2$

Ex 7) Factor:
$$\frac{x^2}{25} - \frac{y^2}{4}$$

Ex 8) Factor: $x^2 + 9$

Ex 9) Factor: $2x^4 - 162$

*If you have a 4th power variable, there is a good chance there will be TWO LAYERS of factoring to complete.

Name: Date:

FACTORING FLOW CHART

STEP 1 Take out COMMON FACTORS (GCF)

STEP 2 Ask: How many terms are there?

Test for difference of squares:

*You need subtraction ("difference") and each term must be a perfect square

If you don't have perfect squares, check to see if you can factor out a GCF.

$$a^2 - b^2 = (a + b)(a - b)$$

Example: $4x^2 - 9$

(2x + 3)(2x - 3)

Example:

 $2m^2 - 32n^2$

 $2(m^2 - 16n^2)$

2(m + 4n)(m - 4n)

Example:

 $4w^2 + 9v^2$

*cannot factor

As it is a SUM

of squares*

THREE

Factoring **trinomials**: $ax^2 + bx + c$ Is the trinomial in order? Can you factor out a GCF?

Type 1: a = 1

Example: $x^2 - 3x + 2$

Ask: what ADDS to "b" (here -3)

& MULTIPLIES to "c" (here +2)

Answer: −1, −2

Write factors: (x-1)(x-2)

Type 2: a ≠ 1

Is it a perfect square trinomial?

Are first and last terms perfect squares?

Is the middle term correct?

Example: $4x^2 - 12x + 9$

Factor using square roots:

(2x - 3)(2x - 3)

Middle term: -6x - 6x = -12x

If it isn't a perfect square trinomial, factor using DECOMPOSITION.

Example: $2x^2 - x - 1$

Ask: what ADDS to "b" (here -1)

& MULTIPLIES to "ac" (here 2(-1) = -2)

Answer: -2, 1

Use these to split (decompose) the

middle term into two separate terms:

$$2x^2 - x - 1$$

 $2x^2 - 2x + 1x - 1$

Factor using grouping:

$$2x(x-1) + 1(x-1)$$

See if two brackets are the same. Factor the bracket out front as a GCF. & the 'leftovers' make up the 2nd bracket.

$$(x-1)(2x+1)$$

Practice factoring expressions using the flowchart for assistance.

Ex 1) Factor: $2x^2 - 22x + 60$

Ex 2) Factor: $p^2 - 25q^2$

Ex 3) Factor: $3y^2 - 7y - 6$

Ex 4) Factor: $4m^2 + 12m - 56$

Ex 5) Factor: $9x^2 - 42xy + 49y^2$

Ex 6) Factor: $8b^2 + 2c^2$

Ex 7) Factor: $8x^2 + 40x + 18$

Ex 8) Factor: $32x^2 - 50y^2$

Ex 9) Factor: 3n⁴ - 48