

Date: Name:

Arithmetic / Interest Unit Review

1) What are the following in terms of arithmetic sequences / series:

d= common difference

2) For the following arithmetic sequence, find the 58th term: 120, 114, 108, ...

$$n = 58$$

$$t_1 = 120$$
 $t_n = t_1 + (n-1)d$
 $d = -6$ $t_{58} = 120 + (58-1)(-6)$ $t_{58} = -222$
 $t_{58} = 120 + (-342)$

3) Find the first term of an arithmetic sequence with $t_{11} = 100$ and d = 8.

$$n = 11$$

$$n=11$$
 $t_n=t_1+(n-1)d$

4) If the first term of an arithmetic sequence is -25, and the last term is 20, with a common difference of 3, find the number of terms.

common difference of 3, find the number of terms
$$\begin{array}{lll}
t_1 = -25 & t_n = t_1 + (n-1) d & 15 = n-1 \\
t_n = 20 & 20 = -25 + (n-1)(3) & n = 16
\end{array}$$

$$d = 3 & 45 = 3(n-1)$$

$$= 20$$

$$= 3$$

$$45 = 3(n-1)$$

$$15 = n - 1$$
 $n = 16$

5) Molly starts with 21 cards and adds 18 baseball cards each month to her collection. How many cards will she have in 3 years? *Think carefully about what vour 'n' value will be.

$$21, 39, 57, 75, ...$$

th = $41 + (101) = 4$

after

I month

$$tn = t_1 + (n-1) d$$

$$n = 36 + 1 = 37$$
 $t_{37} = 21 + 648$
 $t_{1} = 21$
 $t_{37} = 669$

6) Jon is 14 and has a birthday party. Every 3 years after that, up to and including his 50th birthday, he has another party. How many parties has Jon had in total?

14,17,20,...,50
$$t_n = t_1 + (n-1)d$$
 $12 = n-1$
 $t_1 = 14$ $50 = 14 + (n-1)(3)$ $n = 13$
 $d = 30$ $36 = 3(n-1)$ 13 parties

7) Find the sum of the arithmetic series: $-10 + -1 + 8 + \dots + 80$

7) Find the sum of the arithmetic series:
$$-10 + -1 + 8 + \dots + 80$$
 $t_1 = -10$
 $t_2 = -10$
 $t_3 = t_1 + (n-1)d$
 $t_4 = -10$
 $t_5 = t_5 = t_5 = t_5$
 $t_6 = t_6 = t_6$
 $t_7 = t_7 =$

8) Find the sum of an arithmetic series that starts at 37, has a common difference of -6, and has 27 terms.

of -6, and has 27 terms.

$$t_1 = 37 \qquad S_n = \frac{n}{2} \left[2t_1 + (n-1)d \right]$$

$$d = -6$$

$$n = 27 \qquad S_{27} = \frac{27}{2} \left[2(37) + (27-1)(-6) \right]$$

$$S_{27} = -1107$$

9) If an arithmetic series has $S_7 = 175$, and $t_7 = 40$, find t_1 .

$$n = 7$$
 $S_1 = 3$
 $S_2 = 3$
 $S_3 = 3$
 $S_4 = 3$
 $S_4 = 3$
 $S_5 = 3$
 $S_6 =$

10) If an arithmetic series has a first term of 3, and $S_{14} = 406$, find d.

$$\begin{aligned}
t_1 &= 3 & S_n &= \frac{2}{5} \left[2t_1 + (n-1)d \right] & 58 &= 6 + 13d \\
n &= 14 & 52 &= 13d \\
S_{14} &= 406 & 406 &= \frac{14}{5} \left[2(3) + (14-1)d \right] & 52 &= 13d \\
406 &= 7 \left[6 + 13d \right] & 4 &= 4
\end{aligned}$$
11) Find $\sum_{n=2}^{5} 4n - 5$

$$[4(2)-5]+[4(3)-5]+[4(4)-5]+[4(5)-5]$$

3+7+11+15

12) If you started with \$17 and then were given \$19 after the first minute, then \$21 after the next minute, and this pattern continued, how much would you have $S_n = \frac{1}{2} \int_{2t_1}^{\infty} + (n-1) d7$ after 30 minutes?

$$t_1 = 17$$
 $S_{31} = \frac{1}{2} \left[2(17) + (31-1)(2) \right]$

$$n = 31$$

$$d=2$$

$$S_{31} = 15.5[34+60]$$

13) Calculate the simple interest when \$8500 is invested at 4.6% for 7 years.

14) Calculate the number of years that \$2500 is invested at 6% in order to make \$750 in simple interest. t=750 = 5

15) \$5000 is invested at 3.5% for 4 years simple interest. After 4 years, all of that money is taken and invested at 5% for 6 years simple interest. How much in total I=Prt=(5700)(0.05)(6)=1710 will you have after this?

16) \$3000 is invested for 4 years at compound interest of 7%. How much total money will you have after 4 years?

$$A = P(1+r)^t$$

\$3932.39

17) Micah ends up with \$21 522.79 after 7 years of compound interest at 3%. How much did he originally invest?

$$A = P(1+r)^{t}$$

$$P = \frac{t}{7500}$$

$$21522.79 = P(1+.03)^{7}$$

$$21522.79 = P(1.03)^{7}$$

$$21522.79 = P(1.229873865)$$

\$17 500

18a) Joanie wins \$2 000 000 in a lottery. She decides to invest it at 5.5% compound interest for 5 years. How much will she have in total at that point?

$$A = P(1+r)^{t}$$

$$A = 2000000(1+0.055)^{5}$$

$$A = 2000000(1.055)^{5}$$

\$2613 920.01

b) How much more interest will she make with compound interest compared to if she invested with the same terms at simple interest?

\$63 920.01